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The method proposed in this paper can be successfully used for the design of the digital 
FIR full-band differentiator of arbitrary order. It involves the approximation of the FIR 
digital differentiator frequency response directly in the complex domain, and represents 
properly modified eigenfilter method. Introduction of the condition that specification 
parameter of the group delay level τ has a non integer value allows this method to use 
the same design procedure and formulas for differentiators with both even and odd 
length, with very small passband magnitude approximation error and approximately 
constant passband group delay level. These characteristics are enabled due to the fact 
that differentiators, designed by the presented method, possess neither the 
(anti)symmetric feature of impulse response coefficients, nor the strictly linear phase. 

1. INTRODUCTION 

FIR digital differentiator (DD in the subsequent text) is a digital filter whose 
output signal are samples of the derivative of a band limited continuous time 
signal. DDs have a broad application in various practical signal processing 
systems, particularly in instrumentation, radars and motion control systems, where 
the calculation of the instantaneous rate of sampled signal change is needed. In a 
general case, DD can be designed by using available numerical differentiation 
formulas, such as: Gregory-Newton forward and backward difference formulas or 
Bessel, Everett and Stirling central difference formulas. Several very good 
approaches for designing the linear-phase DD, which can be reduced on the eigen-
filter method, are presented in [1–6]. It is well known that for the design of the FIR 
filter having lower time delay than the linear phase FIR filter, and approximately 
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constant passband group delay level, it is needed to solve the complex 
approximation problem. Very good techniques for this purpose, are presented in 
[7–12]. The common characteristic for all of these methods is that their design 
procedures and equations differ for cases of even and odd filter length, as well as 
FIR filters designed by these methods principally have the passband group delay 
level corresponding to the group delay level of the linear phase FIR filter.  

One of relevant features of the method proposed in this paper is that it uses 
the same procedure and formulas for the design of DDs with both even and odd length, 
without any mutual difference for both length cases. This advantage is enabled by 
introducing the condition that the specification parameter of the group delay level τ 
has a non integer value (which is a strict demand in some applications). In addition, 
proposed method enables to design even the first order FIR full-band DD with odd 
length N, as well as the second order FIR full-band DD with even length N, which 
is not possible dealing with FIR full-band DD with the strictly linear phase. The 
passband group delay level of  designed full-band DDs is approximately constant 
and distinct from that of the corresponding linear phase full-band DDs, while their 
magnitude response passband approximation error is extremely low.  

2. THEORETICAL BACKGROUND 

The frequency response of an ideal full-band differentiator ( [ )π∈ ;0ω  ) with 
linear phase, of order  k, in a general case is given by:   
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where Mk(ω) and Pk(ω) are the magnitude and the  phase response of the ideal full-
band differentiator, respectively, whereby FIR structure with length N and a linear 
phase has the passband group delay level given by: τ = (N–1)/2. (To avoid a 
possible confusion, it is needed here to clarify: in this paper the term "order" is 
used to indicate the order of the differentiation, while the term "length" is used for 
specifying the length N of the FIR structure.) In practical use, the need for the FIR 
full-band digital differentiator of order greater than second, is not very common. 

The designed FIR full-band DD with length N and a real impulse response 
a(n), n = 0,1,..., N-1, regardless of its order k, has the frequency response given by: 
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By introducing following vectors: 
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where the superscript T denotes the vector transpose operation, and then applying 
and substituting expressions (3) in equation (2), it becomes: 

 ( ) ( ) ( ) ( ) ( ),jωjω TT ω+ω=−=ω IR HHH saca  (4) 

where, obviously is: 
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Expression (4) is used for the simultaneous approximation both the desired 
magnitude Mk (ω), and  the phase Pk (ω) response of the ideal full-band DD, from 
(1). In fact, in the defined, full frequency band, the real HR(ω) and the imaginary HI 
(ω) part of the designed frequency response from (5), are designed to respectively 
approximate the real FRk(ω) and imaginary FIk(ω) part of the ideal frequency 
response, from (1). This approximation is performed by minimization of the 
quadratic measure error, which is defined on a proper manner [13, 14] as: 
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which introduces the modification of the classical eigenfilter method [15] by 
introduction of weighting coefficients for the separate, but not mutually independent 
approximation of the real and imaginary part of the frequency response of designed 
FIR DD. Further modifications and features are presented as follows. Equation (6) 
can be written as: 

 ( ) IIRRIR EEE α+α=αα ; , (7) 

where E(αR;αI) is the total approximation error (of the total frequency response), 
ω0 is the passband referential frequency, αR and αI are weighting coefficients of the 
frequency response real and imaginary part approximation, respectively. ER and EI 
are approximation errors of the frequency response real and imaginary part, 
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respectively, while τ is the desired passband group delay level, from expression 
(1). It is obvious, from equation (7), that contributions of the frequency response 
real and imaginary parts approximation errors (ER and EI) to the total 
approximation error E(αR;αI), can be adjusted by the pertinent choice of weighting 
coefficients  (αR, αI)  numerical values (thereby ensuring that: 0 < αR< 1; 0 < αI < 1 
and αR + αI =1). This is the main reason of their introducing in expression (6), 
i.e.(7). Substituting expressions for FRk(ω) and FIk(ω) from (1), and expressions for 
HR(ω) and HI(ω) from (5), into  equation (6), one can obtain: 

 ( ) [ ] aQQa R IIRIRE α+α=αα T; . (8) 

From (7) and (8), it is obvious: 
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where QR  and QI  are  N×N  quadratic, real  and  symmetric matrices of the 
frequency response real and imaginary part  approximation, respectively, while: 

 IIR QQQ R α+α= , (10) 

represents NxN quadratic, real and symmetric matrix, whose elements and eigen-
system are necessary to determine. Thus, expression (8) becomes: 

 ( ) ,; T aQa=αα IRE  (11) 

which finally represents the classical formulation of the eigenfilter problem  in the 
least-squares sense [15]. 

Obtained expressions for matrix Q elements, have shown that their values 
depended on values of specification parameters: αR, αI, τ, ω0 and N. After 
computing numerical values of matrix Q elements, next step is computing its 
eigen-values and eigen-vectors. The eigen-vector a of the matrix Q, from 
expression (11), corresponding to its smallest eigen-value, is the vector which 
minimizes the error (11), i.e. (6), and, accordingly to this, it represents the desired 
impulse response coefficient vector of the designed full-band DD, from (2).  

3. DISCUSSION AND RESULTS 

Extensive and detailed examinations in connection with the influence of  
design specification parameters (αR, αI, τ, ω0, N) and their numerical values on 
magnitude and group delay response approximation errors were performed through 
designing a large number of numerical examples of first and second order full-band 
DDs. These examinations have shown that the choice of numerical values, for all 
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specification parameters, could not be done mutually completely independently. In 
fact, by the proper analysis of frequency response real and imaginary parts 
approximation errors, values of specification parameters giving a small variation of 
the group delay response, simultaneously with a small passband magnitude 
response error, can be obtained. In accordance with this, the choice of these two 
characteristics assumes a mild compromise between their qualities (which is well 
known fact). Performed examinations have shown also that, in general, the real part 
approximation error ER has a greater contribution to the total approximation error 
(than imaginary part approximation error EI). Due to this and according to equation 
(7), the numerical value of its corresponding weighting coefficient αR has to be 
smaller than the value of the weighting coefficient αI. 

The following relevant feature, characterizing and distinguishing the 
presented method, deserves to be emphasized: this method uses the same procedure 
and formulas for the design of DDs with both even (Examples 1 and 3) and odd 
(Examples 2 and 4) length N (see Appendix), without any mutual differences for 
both length cases. By introducing the condition that parameter of the group delay 
level τ has a non integer value (which is a strict demand in some applications), 
even first order FIR full-band DDs with odd length N (Example 2), as well as 
second order FIR full-band DDs with even length N (Example 3) can be designed, 
which is not possible dealing with the FIR full-band DD with the strictly linear 
phase. These facts indice on the proposed method generality. In addition, full-band 
DDs (Figs. 1.1 and 3.1) designed by the presented method, have approximately 
constant pass-band group delay level, which can be varied in a relatively wide 
range, (Figs. 1.3; 2.2; 3.3 and 4.2), as well the extremely low magnitude response 
error which is below 0,3% in the most of the passband, and does not exceed the 
value of 1% on passband edges (Figs. 1.2; 1.4; 2.1; 2.3; 3.2  and 4.1). The 
magnitude response error for the first order FIR DD with strictly linear phase and 
even length N = 32, designed by the Mc Clellan-Parks algorithm (Chebyshev 
approximation), has minimax relative error of magnitude response approximation, 
which ranges from –0,6% to +0.6% between passband edges. The method is simple 
and fast, and thus, efficient. Designed full-band DDs do not possess the 
(anti)symmetric feature of their impulse response coefficients, nor the strictly 
linear phase. All these features are achieved due to introduced modifications of the 
classical eigenfilter method. 

4. CONCLUSIONS 

The method proposed in this paper can be successfully used for the design of 
the full-band DD of (theoretically) arbitrary order. By introducing the condition 
that specification parameter of the group delay level τ has a non integer value 
(which is a strict demand in some applications), it is possible to design even the 
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first order FIR full-band DD with odd length N, as well as the second order FIR 
full-band DD with even length N, which is not possible dealing with the digital FIR 
full-band DD with the strictly linear phase. In addition, this method uses the same 
procedure and formulas for the design of differentiators with both even and odd 
length (without any mutual difference),which  indices on the proposed method 
generality. Mentioned characteristics are enabled due to the fact that full-band DD, 
designed by the presented method, do not possess the (anti)symmetric feature of 
their impulse response coefficients, nor the strictly linear phase. They have 
approximately constant pass-band group delay level, which can be varied in a 
relatively wide range. They also have extremely low magnitude response error, 
which is below 0,3% in the most of the passband, and does not exceed the value of 
1% on passband edges. 
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APPENDIX 

Example 1. Design of the first order FIR full-band DD with the even length N 
and following specification parameters values: N = 32; τ = 9.5; ω0 = 0.5π; αI = =99αR. 
(Figs. 1.1, 1.2, 1.3 and 1.4). 

Example 2. Design of the first order FIR full-band DD with the odd length N 
and following specification parameters values: N = 31; τ = 11.5; ω0 = 0.5π; αI = =99αR.  
(Figs. 1.1, 2.1, 2.2 and 2.3). 

Example 3. Design of the second order FIR full-band DD with the even 
length N and following specification parameters values: N = 32; τ = 12.5; ω0 = =0.5π; 
αI = 99αR.  (Figs. 3.1, 3.2, 3.3). 

Example 4. Design of the second order FIR full-band DD with the odd length 
N and following specification parameters values:  N = 31; τ = 11.5; ω0 = 0.5π; αI = =99αR. 
(Figs. 3.1, 4.1, 4.2). 

Note. Magnitude responses of first order FIR full-band DDs from Examples 1 
and 2, have the same graphic appearance. Due to this (and the limited manuscript 
volume), only one magnitude response graphic, presented in the Fig. 1.1, is given 
and holds for both Examples 1 and 2. 

The same feature holds for the magnitude responses of second order FIR full-
band DDs from Examples 3 and 4: accordingly, only one magnitude response 
graphic, presented in the Fig. 3.1, is given and holds for both Examples 3 and 4. 
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Fig. 1.1 – Magnitude response of the first order 

FIR full-band DD from Examples 1 and 2. 
Fig. 1.2 – Absolute error of the magnitude 

response of the DD from Example 1. 

 
Fig. 1.3 – Group delay response of the DD 

from Example 1. 
Fig. 1.4 – Relative error of the magnitude 

response of the DD from Example 1. 

 
Fig. 2.1 – Absolute error of the magnitude 

response of the DD from Example 2. 
Fig. 2.2 – Group delay response of the DD 

from Example 2. 
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Fig. 2.3 – Relative error of the magnitude 

response of the DD from Example 2. 
Fig. 3.1 – Magnitude response of the second 

order FIR full-band DD from Examples 3 and 4. 

 
Fig. 3.2 – Absolute error of the magnitude 

response of the DD from Example 3. 
Fig. 3.3 – Group delay response of the DD 

from Example 3. 

 
Fig. 4.1 – Absolute error of the magnitude 

response of the DD from Example 4. 
Fig. 4.2 – Group delay response of the DD 

from Example 4. 
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